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Abstract: While COVID-19 has dominated Influenza-like illness (ILI) over the past few years, there
are many other pathogens responsible for ILI. It is not uncommon to have coinfections with multiple
pathogens in patients with ILI. The goal of this study was to identify the different organisms in symp-
tomatic patients presenting with ILI using two different high throughput multiplex real time PCR
platforms. Specimens were collected from 381 subjects presenting with ILI symptoms. All samples
(nasal and nasopharyngeal swabs) were simultaneously tested on two expanded panel PCR plat-
forms: Applied Biosystems™ TrueMark™ Respiratory Panel 2.0, OpenArray™ plate (OA) (32 viral
and bacterial targets); and Applied Biosystems™ TrueMark™ Respiratory Panel 2.0, TaqMan™ Array
card (TAC) (41 viral, fungal, and bacterial targets). Results were analyzed for concordance between
the platforms and for identification of organisms responsible for the clinical presentation including
possible coinfections. Very good agreement was observed between the two PCR platforms with
100% agreement for 12 viral and 3 bacterial pathogens. Of 381 specimens, approximately 58% of the
samples showed the presence of at least one organism with an important incidence of co-infections
(~36–40% of positive samples tested positive for two and more organisms). S. aureus was the most
prevalent detected pathogen (~30%) followed by SARS-CoV-2 (~25%), Rhinovirus (~15%) and HHV6
(~10%). Co-infections between viruses and bacteria were the most common (~69%), followed by
viral-viral (~23%) and bacterial-bacterial (~7%) co-infections. These results showed that coinfections
are common in RTIs suggesting that syndromic panel based multiplex PCR tests could enable the
identification of pathogens contributing to coinfections, help guide patient management thereby
improving clinical outcomes and supporting antimicrobial stewardship.

Keywords: respiratory tract infections; COVID-19; influenza-like illness; multiplex PCR; syndromic
panels

1. Introduction

Respiratory tract infections (RTIs) are one of the major public health concerns across
the world. As opposed to the previous belief that RTIs are caused by a single pathogen,
studies have shown that most RTIs are a result of a combination of bacterial and/or viral
pathogens coinfecting the host, leading to increased disease severity [1]. While respiratory
viruses such as influenza A/B, respiratory syncytial virus (RSV), human metapneumovirus
(hMPV), rhinoviruses (HRV), etc. dominate the RTIs, 10–15% of patients develop secondary
bacterial coinfection [2]. Due to their high transmission rate, RTIs are accountable for
significant mortality and hospitalizations, thus posing a significant healthcare and economic
burden globally. According to the WHO, lower RTIs are the fourth leading cause of
death worldwide [3]. Among them, RTIs caused by RSV are one of the major causes
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of hospitalization each year [4,5]. In developing countries, RTIs are the most common
cause of mortality in children below five years of age, and account for 20–40% of the
total volume of primary care visits in the pediatric population [6]. Prior to the COVID-19
pandemic, seasonal influenza represented the highest burden in terms of both incidence
and cost among all preventable diseases [7–9]. According to a study, in 2015, seasonal
influenza in the United States resulted in an estimated economic burden of $11.2 billion, of
which, $8.0 billion were accounted toward indirect costs [10]. It is worth noting that the
annual economic burden of non-influenza viral RTIs accounted for a much higher cost of
$40 billion [11]. The COVID-19 pandemic added another layer of economic burden, with
hospitalizations increasing in 2020 and 2021, along with preventative measures including
prolonged quarantines and isolation [12,13]. The estimated burden of COVID-19 alone
in the United Kingdom was 39.6 billion pounds, and when accounting for mitigation
strategies (including quarantine) the direct health-related burden increased to 53.1 billion
pounds [13]. In the United States, between March 2020 and February 2021, the loss of work
hours alone represented an estimated cost of $138 billion among full-time workers [14].

The clinical presentations of RTIs have overlapping symptoms, often showing
influenza-like illness (ILI). While COVID-19 has dominated ILI over the past two years,
other pathogens can potentially be responsible for ILI. In addition, it is not uncommon
to detect coinfections with multiple pathogens in patients presenting with ILI [15–17].
Therefore, insights into coinfecting pathogens could help with accurate disease prognosis,
patient care management, and outcomes. In the past two decades, advancement in the
nucleic acid amplification test (NAAT)-based techniques, especially multiplex PCR, has
revolutionized the field of infectious disease diagnostics. The use of a syndromic panel-
based testing approach in RTIs has been shown to improve patient outcomes in a timely
manner [18]. The goal of this study was to identify the various respiratory pathogens
in symptomatic patients presenting with ILI/RTI using two different high-throughput
multiplex real-time PCR platforms.

2. Material and Methods
2.1. Specimen Collection

Nasopharyngeal and anterior nasal swabs were both collected from 381 individuals of
all ages who exhibited symptoms of an acute respiratory tract infection that developed over
the past seven days. The specimens were collected between February 2021 and May 2021,
from three geographically diverse locations in the United States. Eligibility was determined
using the following inclusion symptoms criteria: ILI symptoms (fever, chills, runny or
stuffy nose, body aches, headache, and/or feeling excessively tired), a new loss of taste or
smell, a new or worsening cough or sore throat, shortness of breath, difficulty breathing,
nausea, vomiting, or diarrhea. Symptoms were further classified as systemic or respiratory
symptoms for analysis (Table 1). Individuals who had received a COVID-19 vaccine or
any antiviral therapy were not eligible to participate. Nasopharyngeal and anterior nasal
swabs were collected in accordance with the instructions in the appropriate collection kit
package insert and placed into the appropriately labeled containing collection medium.
Deidentified samples were stored at a temperature between 2 ◦C and 8 ◦C and shipped to
the testing sites. All protocols have been approved by the author’s Institutional Review
Board for human subjects (IRB approval number: PCP0068620).

Table 1. Classification of symptoms.

Systemic Symptoms Respiratory Symptoms

Fever Runny nose
Chills Cough

Body aches Sore throat
Headache Shortness of breath
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Table 1. Cont.

Systemic Symptoms Respiratory Symptoms

Fatigue
Loss of taste or smell

Nausea
Vomiting
Diarrhea

2.2. Multiplex Single Panel Testing

All samples were tested using the TaqPath™ COVID-19, FluA, FluB Combo Kit
(Thermo Fisher Scientific, Waltham, MA, USA), the Lyra® Influenza A+B Assay (Quidel,
San Diego, CA, USA), and the Lyra® SARS-CoV-2 Assay (Quidel, San Diego, CA, USA)
according to the manufacturer’s instructions for use. Sample extraction was performed
using both the KingFisher™ Flex Purification System (Thermo Fisher Scientific) and the
NUCLISENS® EASYMAG® (BioMérieux, Durham, NC, USA). After extraction, all real-time
PCR was performed using an Applied Biosystems™ 7500 Fast Dx instrument for both
assays. After initial testing, remnant specimens were stored at −80 ◦C.

2.3. Multiplex Expanded Panel Testing

Remnant samples (nasal and nasopharyngeal swabs) were simultaneously tested on
two expanded panel PCR platforms: the Applied Biosystems™ TrueMark™ Respiratory
Panel 2.0, TaqMan™ Array card (TAC) (41 viral, fungal, and bacterial targets) and the
Applied Biosystems™ TrueMark™ Respiratory Panel 2.0, OpenArray™ plate (OA) (32 viral
and bacterial targets) at the HealthTrackRx Laboratory located in Denton, TX, USA. TAC
cards were prepared and loaded according to the manufacturers’ instructions. The OA
panels were run according to manufacturer instructions as previously described [19]. Both
TAC and OA panels were run on the QuantStudio12K flex platform. PCR cycling was
performed using the following program: single cycle of enzyme activation (95 ◦C) for
10 min, followed by 40 cycles of denaturation (95 ◦C) for 15 s, and annealing/extension
(60 ◦C). Results were analyzed for concordance between the two platforms for different
organisms responsible for the clinical presentation, as well as for coinfections.

3. Results

A total of 381 deidentified respiratory samples (nasal and nasopharyngeal swabs)
were collected from individuals experiencing ILI symptoms. SARS-CoV-2 was detected in
only 84 samples (22%), and all the samples were negative for Flu A or Flu B with either
of the two influenza detection assays (Table 2). These data suggested that the remaining
297 individuals (78%) that presented with ILI and tested negative for SARS-CoV-2, Flu A,
and Flu B, might be infected with other respiratory pathogens.

To identify other respiratory pathogens that could be responsible for the ILI symp-
toms, the entire sample cohort was tested on two expanded panel PCR platforms (TAC
and OA) for the presence of various viral, bacterial and fungal respiratory pathogens. Of
381 specimens, approximately 58% of the samples showed the presence of at least one
organism (TAC: 223/381 (58.5%); OA 218/381 (57.8%)) (Figure 1 and Table S1). The distri-
bution of all positive specimens by age range was similar to that of the total population, and
revealed more samples collected from the 20–29 and 30–39 age groups, which comprised
approximately 47% of the total positive cases (Figure 2). Interestingly, both positive and
negative cohorts exhibited similar respiratory and systemic symptoms (Figure 3).
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Table 2. Performance comparison of TaqPath™ COVID-19, FluA, FluB Combo Kit, Lyra® SARS-
CoV-2 Assay and Lyra® Influenza A+B RT-PCR Assay for detection of SARS-CoV-2, Flu A and Flu B.
* 1 sample was tested positive on TaqPath™ COVID-19, FluA, FluB Combo Kit and invalid for
SARS-CoV-2 detection on Lyra® SARS-CoV-2 Assay). N/A: PPA not applicable due to a lack of
positive samples.

Lyra® SARS-CoV-2 Assay Lyra® Influenza A+B RT-PCR Assay
SARS-CoV-2 Flu A Flu B

Positive Negative Total Positive Negative Total Positive Negative Total
Positive 76 7 84 * 0 0 0 0 0 0

Negative 3 294 297 0 381 381 0 381 381

TaqPath™
COVID-19,
FluA, FluB
Combo Kit Total 79 301 381 0 381 381 0 381 381

PPA (95% CI) 96.2% (89.3% to 99.2%) N/A (0.0% to 100.0%) N/A (0.0% to 100.0%)
NPA (95% CI) 97.7% (95.3% to 99.1%) 100.0% (99.0% to 100.0%) 100.0% (99.0% to 100.0%)
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The analysis demonstrated very good concordance between the two PCR platforms
(TAC and OA). The data showed 100% agreement (PPA, NPA) for the 12 viral pathogens:
SARS-CoV-2, Coronaviruses (NL63, OC43, 229E), Parainfluenza virus (HPIV) 2, HPIV
3, Pan-enterovirus, Enterovirus D68, Respiratory syncytial virus B (RSV-B), HHV4-EBV,
HHV5-CMV, and HHV6; and three bacterial pathogens: Hemophilus influenzae, Klebsiella
pneumoniae and Streptococcus pneumoniae (Table 3). Regarding the other detected pathogens,
Staphylococcus aureus (98.97% PPA, 100% NPA) and hRV (100% PPA, 99.10% NPA) were
observed (Table 4). One sample tested positive for hMPV on TAC but did not test positive
for this organism on OA (Table S2). In addition, Moraxella catarrhalis and Pneumocystis
jirovecii were detected positive on TAC (18 and 2 samples, respectively). Since TaqMan
assays for Moraxella catarrhalis and Pneumocystis jirovecii were not available on OA, an
agreement could not be established for these two pathogens (Table S2).

Table 3. Organisms that showed 100% agreement statistics between the Applied Biosystems™
TrueMark™ Respiratory Panel 2.0, TaqMan™ Array card (TAC) and the Applied Biosystems™
TrueMark™ Respiratory Panel 2.0, OpenArray™ plate (OA).

Organism Name (Number of Specimens)
Haemophilus influenzae (N = 10) HHV-6 (N = 30) Coronavirus NL63 (N = 5)

Enterovirus D68 (N = 1) RSV-B (N = 1) Coronavirus OC43 (N = 5)
Klebsiella pneumoniae (N = 8) EBV (N = 9) Coronavirus 229E (N = 2)

Streptococcus pneumoniae (N = 4) CMV (N = 2) HPIV-2 (N = 1)
Pan-enterovirus (N = 6) SARS-CoV-2 (N = 78) HPIV-3 (N = 2)

Overall agreement (TAC vs. OA) 100.00%

Comparable results were also obtained on both platforms regarding detection of
mono- and poly-microbial infections (Figure 3). Mono-microbial infections were the most
prevalent among positive samples, with 59.64% and 63.59% on TAC and OA, respectively
(Figure 4 and Table S2). However, data collected using both platforms also showed an
important incidence of coinfections, with 40.36% and 36.58% of positive samples testing
positive for two or more organisms on TAC and OA, respectively (Figure 4). Among all
coinfections, two pathogens were detected in almost one third of the positive cases (34.08%
on TAC, 30.41% on OA) (Figure 3 and Table S4), and three pathogens were detected in
around 6% of all positive cases (5.83% on TAC, 5.99% on OA) (Figure 3 and Table S5).
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Finally, one sample tested positive for four organisms on TAC, while on OA a maximum of
three co-infecting organisms were detected (Figure 4 and Figure S6). The few discrepancies
in the distribution of mono- and poly-microbial infections between the two platforms can
be mostly explained by the fact that detection of M. catarrhalis and P. jirovecii is not included
on OA.

Table 4. Overall agreement statistics between the Applied Biosystems™ TrueMark™ Respiratory
Panel 2.0, TaqMan™ Array card (TAC) and the Applied Biosystems™ TrueMark™ Respiratory Panel
2.0, OpenArray™ plate (OA) for detection of Staphylococcus aureus and Rhinovirus.

TAC
Positive Negative Total

Positive 96 0 96
Negative 1 284 285

Staphylococcus
aureus

Total 97 284 381
Positive Percent Agreement [95% CI] 98.97% [94.39%–99.82%]

Negative Percent Agreement [95% CI] 100.00% [98.67%–100.00%]
Positive Negative Total

Positive 47 3 50
Negative 0 331 331

Rhinovirus

Total 47 334 381
Positive Percent Agreement [95% CI] 100.00% [92.44%–100.00%]

OA

Negative Percent Agreement [95% CI] 99.10% [97.39%–99.69%]
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Figure 4. Distribution of mono- and poly-microbial infections from samples tested with the TAC or
OA platform among all positive samples.

The overall relative prevalence of the type of pathogens among all positive specimens
was analyzed and showed that viral infections (~60%) were the most prevalent followed
by bacterial infections (~40%) while fungal infection was rarely detected (1% on TAC)
(Figure 5). A detailed analysis of the detected pathogens showed that S. aureus was the
most prevalent on both platforms (~30%) followed by SARS-CoV-2 (~25%), HRV (~15%)
and HHV-6 (~10%) (Figure 6). M. catarrhalis was also detected in 6% of the positive samples
on TAC (Figure 6A) which is not included on OA (Figure 6B). The remaining organisms
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accounted for around 18% of all infections detected on both platforms and comprised
pathogens that had lower relative prevalence (Figure 6). Coinfections between viruses
and bacteria were the most common (~69%), followed by viral–viral (~23%) and bacterial–
bacterial (~7%) coinfections (Figure 7). Coinfections between bacteria and fungi were rare
(1.3% of all coinfections) (Figure 7) and detected only on TAC. S. aureus was the most
prevalent bacterial coinfecting pathogen, where SARS-CoV-2/S. aureus coinfections were
the most common (~30%), followed by HRV/S. aureus (~13%), HHV6/S. aureus (~8%), and
M. catarrhalis/S. aureus (~5%) (Figure 8). In addition, around 9% of all coinfections involved
SARS-CoV-2/HHV6 (Figure 8).
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4. Discussion

All patients enrolled in this study displayed symptoms of ILI, and in light of the
fact that these patients were presenting to the hospital during the COVID-19 pandemic,
these samples were tested using a multiplex PCR panel for the presence of SARS-CoV-2,
Flu A, and Flu B. While a proportion of samples were positive for SARS-CoV-2, none
of the samples were positive for influenza. While public health experts had predicted a
“twindemic” in the winter of 2021, the complete absence of influenza was a little surprising.
In hindsight, strict economic lockdowns and restrictions on international travel, along
with other non-pharmaceutical interventions enacted to curtail the spread of COVID-
19, can explain the historically low influenza activity in the United States during 2020
and 2021 (FluSurv-NET) [20]. It was surprising, however, that only around 20% of the
ILI patient samples tested positive for the presence of SARS-CoV-2. This indicated that
patients presenting with symptoms of ILI had infections by respiratory pathogens other
than SARS-CoV-2 and influenza.

To study this possibility, we evaluated these samples using an expanded respiratory
pathogen PCR panel. We were able to detect the presence of at least one ILI-causing
pathogen in around 57% of the samples. We also report significant coinfections, both
bacterial and viral, which can potentially complicate the disease manifestation and can
impact the treatment of these patients. Importantly, rhinovirus was detected in 23.8% of the
patient samples. In pediatric patients, respiratory viral burden was found to be significantly
higher in hospitalized patients as opposed to the outpatient population [21]. The same study
demonstrated that rhinovirus was a significant cause of bronchiolitis and pneumonia [21].
In addition, some viral infections can also predispose to bacterial superinfections, and the
use of expanded panels could be valuable to detect such complications. Multiple studies
have also shown the advantage of utilizing expanded PCR panels in diagnosing the cause
of respiratory infections over the use of smaller PCR panels targeting one or two pathogens
such as influenza and RSV [22–24]. In addition, studies have shown that that multiplex
PCR panels can reduce the use of antimicrobials and the length of hospital stay associated
with respiratory infections as compared to conventional diagnostic methods [25,26].

The data presented in this study pertain to an outpatient population wherein the poli-
cies for using NAAT-based technology for the detection of respiratory pathogens presents
some ambiguity. The current Infectious Disease Society of America (IDSA) and American
Thoracic Society (ATS) guidelines for detecting and treating community acquired pneumo-
nia still recommend empiric therapy for the treatment of bacterial pneumonia. Although
the advantage of PCR in providing quick results is acknowledged, its use over the classical
diagnostic methods (sputum and blood cultures) has not been recommended due to the
lack of data regarding the clinical advantage of the technique [27]. In addition, according to
Centers of Medicare and Medicaid policy dictating the reimbursement of laboratory tests,
the use of expanded PCR panels (>5 pathogens) in an outpatient setting is not considered
medically necessary [28]. Although ILI are usually self-limited conditions, some may
result in complications such as lower respiratory tract infections, including pneumonia,
particularly in high-risk populations [29,30]. Although our dataset comprised a small
cohort of patients aged 60 years and older, these high-risk patients showed respiratory
infections with a significant number of clinically relevant organisms, including polymi-
crobial infections. The presence of these organisms can lead to hospitalization and affect
treatment options and disease prognosis especially if not treated promptly with appropriate
antimicrobials. For instance, the presence of S. aureus was found in almost 30% of patient
samples. Although S. aureus could be part of the commensal flora in healthy carriers, it
can also cause invasive illnesses, including pneumonia [31]. Among all S. aureus strains,
Methicillin-resistant Staphylococcus aureus (MRSA) are a major threat for public health. A
multi-center prospective study of adult patients hospitalized with community-acquired
pneumonia (CAP) showed that a significant number of hospitalized patients with similar
overlapping symptoms were treated with anti-MRSA antibiotics [32]. Current IDSA and
ATS guidelines recommend against empiric antibiotic treatment of MRSA, but addition of
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vancomycin and linezolid is recommended if MRSA-associated CAP is suspected [33]. It
has been suggested that rapid detection of S. aureus and other bacterial causative agents of
CAP would result in an overall reduction in the use of anti-MRSA antibiotics, allowing for
better antibiotic stewardship [32]. Importantly, a recent study suggested that utilization of
multiplex bacterial PCR may reduce inappropriate antibiotic use, potentially promoting
good antibiotic stewardship in hospitalized patients with bacterial pneumonia [34]. In the
context of antimicrobial stewardship, early detection of infecting pathogens in patients
presenting ILI symptoms can also help discriminate between viral, bacterial, and fungal
infections, and help determine the appropriate treatment decision. Finally, in this study,
over 40% of tested specimens did not test positive for any pathogens despite experiencing
ILI symptoms. These patients might be infected with pathogens that were not included in
the expanded panel, or they might experience non-infectious diseases such as allergies for
whom antibiotic treatment is not appropriate. This finding further emphasizes the potential
role that expanded PCR panels could play in guiding antimicrobial decisions.

Another practical aspect of this study was the assessment of two different PCR tech-
nologies for the expanded panel testing. It has been previously demonstrated that both
TAC [35,36] and OA [2,19] platforms can be employed for the simultaneous detection of
multiple respiratory pathogens. Both platforms utilize the TaqMan® probe-based multi-
plexed, real-time PCR technology. We observed 100% concordance for most of the detected
pathogens on both platforms, which showed that our data are consistent despite using
two different testing methods. These findings further highlight the utility of a flexible high-
throughput real-time PCR system such as QuantStudio12K Flex, which can be equipped
with heating blocks to run either platform depending on the sample volume burden of
the testing laboratory, helping maintain a quick turnaround time for results which can be
crucial to patient care.

One of the limitations of this study is the lack of data regarding patient outcomes,
which does not allow us to conclude on the impact of utilizing a large respiratory panel
PCR on patient care and management. Moreover, this study contained a very limited subset
of patients aged >60 years that are at higher risk of ILI complications and hospitalization.
Future studies should focus on high-risk populations including detailed follow up data to
assess how expanded multiplex PCR panels could improve clinical outcomes.

This study represents a significant advancement in our understanding of the diagnosis
of ILI-causing pathogens in an outpatient population where the diagnostic guidelines are
not as clear as in the case of hospitalized patients. The data presented clearly delineates
the superiority of a multiplexed PCR approach in detecting respiratory bacterial, viral,
and fungal pathogens over tests that detect single pathogens. This is especially true in the
backdrop of a global pandemic, where the focus and availability of diagnostic testing is
restricted. Thus, in the context of ILI complications, our data highlight the potential role of
using expanded RTI panels to adapt treatment decisions and improve patient outcomes,
especially in the population that is at highest risk of complications of ILI.
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